Some Applications of Cubic
Equations in Engineering

by Jelita -

Submission date: 14-Mar-2022 02:34PM (UTC+0700)
Submission ID: 1783889254

File name: ZAHEDI.PUBLISHED_JOURNAL.pdf (1.16M)
Word count: 5205

Character count: 24181



Some Applications of Cubic Equations in Engineering: Basic Theory

Zahedi, Anton Abdulbasah Kamil, Irvan, Jelita, Harahap Amin, Affandi Marwan, Sarmin Suparni.

Abstract

Cubic equations have many applications in engineering, three of them are discussed in this
paper. There are many equations of states for real gases but the cubic equations are the simplest
ones and are sufficiently accurate for a limited range of temperatures and pressures. Degree of
dissociation of chemical equilibrium for carbon dioxide and water can be written as cubic
equations. Slope of a simply supported beam loaded by a continuous load is also represented as
a cubic equation. Although a cubic equation has three roots, only real roots are valid in real
applications discussed in this paper. Even there may be only one root that can be used; two
other roots will be discarded. There are many ways a cubic equation solved but the simplest
one is to solve it manually using a scientific calculator. Software and programming languages
are better if there are many equations to be solved repeatedly.

1. Introduction

A cubic equation is a polynomial of degree three which is generally written as
ax® +bx*4+cx+d=0 (1)
where a,b,c and d are the coefficients of the equation and a is strictly not equal to zero. We
6 only interested for real values of the coeflicients.
According to the fundamental theorem of algebra, a polynomial of degree n has n roots,
including multiplicities; see [15], for example. In general, roots of a polynomial can only be
found exactly for degree less than five. This theory was proved by Galois, a young French
mathematician in 1830, and described in most textbooks on abstract algebra; see [5], [7] and

, forexample. Clearly, a cubic equation will have three roots, which can be divided as follow:

L. Three real roots
2. Multiple roots
3. One real root and two imaginary ones.

In engineering applications, we are usually interested in real roots only. Often we only need
one real root, which must be chosen from the real roots. There are many applications of cubic

equations in engineering but in this paper we will only discuss three of them.

2. Ealation of State

An equation of state is an equation which relates pressure (P), temperature (T) and specific
volume of a substance (v)[1],[2],[12] and [18]. Only two of those parameters are independent.
Usually P and T are independent. However, most equations of state are implicit in specific

volume, makes it as the independent variable together with temperature.




There are hundreds of equations of states that have been developed: [1] lists 25 of them.
However, only a few of them which still remain popular. We will discuss the cubic equations
of state. Cubic equations are very simple and may not represent the state of a substance very
accurately except in a limited range of temperature and Presge- However, they are still useful
since their simplicity rukes them attractive for analysis. There are four well-known cubic
equations of states i.e. the Van der Waals (VdW), Redlich-Kwong (RK), Soave (SRK), and
Peng-Robinson (PR) equations. Those four equations of state will be discussed briefly.
Derivations for the formulas concerned are not given; they can be found in [11].

2.1 Van der Waal’s equation (Ew)
The VAW equation is the oldest equation of state which is written as
RT a

2

Cv=b ¥ (2)
Eqg. (2) c%be arranged in terms of v as

vq—[b+R—;)v1+iv—@=0

P P (3)
or
v4pri+qu+r=0 (4
which is a cubic equation where
RT b
p:-(b+T),q:%and r:-aT (5)

Here, a, b, and R are constants which depends on a substance.

2.2 Redlich-Kwong’s equation (RK)
The RKﬁquation is an improvement of the VAW equation and more accurate than the
former. It is written as
RT a
p="" -
v—b ﬁ v(v+h)

(6)
Eq. (6) can be arranged in terms of v as
s RT , a bRT ab
V———Vv+ ——=——-b2 y——==0
which is similar to Eq. (4) where

— R =4 _BRT 4o . _ _ AP
p_ qu Pﬁ P b.!r P\E (S)

23 wve equation (SRK)
Soave replaced the term a/NT in the RK equation with a function of T and @ involving

temperature and acentric factor so Eq. (6) becomes




RT  aca
T v—b v(v+h) )
which can be arranged in terms of v as
v fﬁvj +[MbRT ijvuba =0
P F (10)
where o ﬁiven by

a idl + (0,48 + 1.574w — 0.176w*) (1 — ‘/T_,,)]z (11)
T is called reduced temperature defined as T/T. where Tc is the critical temperature while © is
the Pitzer acentric factor.
Eq. (10) is similar to Eq. (4) where

P k] P P " P (12)

2.4 Peng-Robinson equation (PR)
Peng and Robinson proposed an equation of state in the form of
P RT - aa 1
v—b v +2bv—b" (13)

where o is given by

a = [1+(0.37464 +154226 002692 * 1 - T, )| (14)

Eq. (13) can be arranged as

(15)

PP TP TP (16)

2.5 Equations of state in terms of compressibility factor
We can also write the equation of state of a gas as a function of compressibility factor Z.
In general, a cubic equation for real gases with two parameters can be written as
RT a

P= ) >
v—>b  ve+ubv+wh- (17)

which is equivalent with

22+ pZi4qZ4+r=0 (18)

where Z is the compressibility factor of the gas defined as Pv/RT. The values of p,q and 7 in

Eq. (17) are different from those values in Eq. (4). They are given as
p=—(1+B—uB),qg=4+wB? —uB —uB?),r = —(AB + wB? + wB?) (19)




where

I L

A RT? R% (20)
In theory, there are three roots for a cubic equation. If there are three real roots found, the
smallest one is taken for the saturated liquid, the biggest is for the saturated vapor while the
third one is not used. If there is one real root and two imaginary ones, the real root represents

the gas state while the imaginary roots are discarded.

3. Chemical Equilibrium of water and carbon dioxide
At high temperatures, gases tend to dissociate or decompose [2], [12] and [18]. Examples

of dissociation reactions are as follow:

H20 + Hz + 1500

H20 + 02 < 20H

CO2 «+ CO + %402

N2+ Oz <5 N2
In general, for chemical equilibrium

aA +bB cC+dD (21
where equilibrium constant K, is defined as [2], [12] and [18].

P‘P“' p c4d—a—b
K - , Lj {J
P b
}341. PH PU (22‘]

where Pa, Pr, Pc, and Pp are partial pressures of components in the reaction while P and Po are

total pressure and reference pressure (which is usually atmospheric pressure), respectively.

Equation (21) can also be written as

K = ngnb (ﬂl)c+d_a-b _ EE(EL)Hd-a-b

P n% np \Pyn, [A]e [B]? \Pyn, )
where the square bracket denotes the amougs of a gas.
For the dissociation of CO2, we have:a=1,b=0,c=1andd = 1/2. So,
[co1[0,]%/2 ¢ P 1)\1/2
P~ icoy] (P_nﬂ_t) (24)

We will now determine the composition of gases from the dissociation of CO2 at
temperature T and pressure P:
CO2 «» CO + %02
Let there be one mole of CO:z. After the equilibrium is achieved, COz will dissociate to « mole

of CO and %20 mole of Oz. The remaining amount of CO2 is (1-a) mole. The total amount of

gases is (1+%0) mole. Substituting these values to Eq. (24) results in

a P a
K(ﬂ') =1 a P—om (25)

If we denote equilibrium constant at a certain temperature T is K*, we then have




gr=2 |22 (26)
1—a& +| Pp 2+
The wvalue of K* only depends on temperature, not on pressure. Most engineering
thermodynamics have tables for values of equilibrium of various chemical reactions; for
example, see [2] and [18].
We can remove the square root by squaring both sides in Eq. (26)
a2 [P a
K= (%) Jrae @)

By taking f = P/(PoK*?) and rearranging Eq. (27), we then have

(1=-fNa*=3a+2=0 (28)
If f# 1, we can divide all terms in Eq. (28) by (1-f). We then have a depressed cubic equation
where the coefficient of the second term is zero,

a*+pa+qg=0 (29)

where p = —ﬁ and g = ﬁ If f =1, the cubic term in Eq. (28) vanishes. The solution is

. 2

very simple: a = e
It must be noted that in actual situation, there may be more than one equation that must be
solved. In the given example, O2 will also dissociate into oxygen atom. We will then have two
nonlinear equilibrium reactions which are more difficult to solve. This case will not be

discussed in this paper; interested readers can see [10].

4. Simply supported beam loaded by continuous load
Fig. 1 shows a beam supported at the ends and loaded by a continuous or distributed load.
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Figure | Simply supported beam loaded by continuous load

The deflection curve is gigen by the Euler-Bernoulli equation which relates the deflection
with bending moment (Mx). modulus of elasticity E and moment of inertia of the cross section
of the beam (I); see most textbooks on strength of materials. Most textbooks take the deflection
upward as positive downward as negative; see [4], [6], [9] and [16] for example. [6] adopts the
opposite ones because most deflections in engineering are downward. We will take the

deflection upward as positive so the Bernoulli equation becomes




EITY = M, (30)
Integrating Eq. (30) will yield the deflection curve along the beam.

Figure 1 shows three regions where the bending moment can be applied: from O to a, from
a to a+b and from a+b to L. Since there are three regions, there will be also three equations
required for the bending moment along the length of the beam. However, we can use only one
equation by adopting using singularity functions; see [16] for example.

Without derivation, the equation for the bending moment along the beam for0 £ x £ L is
given by

MX:RAx-%(x-a)2+%(x-a-b)2 (30

The value <x—a> becomes zero if x—a<0 but is equal to x—a if x=a. Likewise, <x—a—b=> becomes

zero if x—a—b<0 but is equal to x—a—b if x>a+b. From Eq. (30) we then have,

EIY = Rx + L{(x —a)? — (x — a— b)? 32
= —Rex +{{x — a)* — {x — a— b)?) (32)
Integrating Eq. (32) twice produces
2
Bl = —R, >+ 2{x—a) —(x—a—b)*} + ¢ (33)
EIY = Ry + L {x —a)* — (x —a=D)*} + Cux +C; (34)

Ciand C; are boundary conditions. At the supports, deflections are zero. So we then have
Xx=0,Ya=0—->Cl=0
Xx=L, Yp=0,which yields

€ =Ri= =L - @)~ (L—a-b)] (35)

24L
RA can be found from the conditions that at the supports, bending moments are equal to zero.
We then have

Ry =32[(L—a)* = (L—a—-b)] (36)

EIY = glx—al a gh*x? N gb* (212 —b%)
o} 4L 4L (37)
Derivations of all formulas in this part can be done by using formulas found in most mechanics
of materials (or strength of materials) textbooks such as [4], [6] and [16]. Complete formulas
for various kinds of loads are given by [17].
The term inside the square bracket is zero for x < a. Substituting a = L—-b and arranging the
terms yields
Elv=—L_4L[x-L+b] —6b*x* +b* QL —b*))
24L (38)
Now, we substitute b=mL and x = pL where 0 «cm < 1 and 0 < p < 1 to Eq. (38). After
simplification and arranging the terms we then have

C]L; 3 2. 2 2 2
= —l+m] —6m p +m(2—m
AET {4Ip ] P ( )} (39




Terms inside the curly brackets are dimensionless. Eq. (39) can be written as
Y =1 f(p) (40)
where
fi =qL*/24E1 and f(p) =4[p-1+m]* - 6m2pza m2(2-m?) (41
The equation for the deflection along the length of the beam for 0 = x =L is given by

o 2.3 2 242
EIY = glx—al - gb x N gb x(2L° =-b7)
6 12L 24 L (42)

Substituting b = mL and x = pL to Eq. (42) results in

EIY =T {lx—L+b) - 20°% + 5521 - b))
24L

(43)
which can be transformed to
=21121{[p—l+m]4—2m1p3+m1p(2—m2)} (440
Again, Terms inside the curly brackets are dimensionless. Eq. (44) can be written as
Y =tf2g(p) (45)
where
f2=qL*/24El and g(p) = [p~1+m]* -~ 2m’p’ + m*(2-m%)p (46)

The maximum deflection along the beam can be found by setting Eq. (38) to zero, which
is similar to set f(p) in Eq. (39) to zero. Since f(p) is cubic, it has three roots. However, we are
only interested in a real root which lies between 1-m and 1, which is equivalent o a< x <L.
5. Solving cubic equations

A cubic equation ax® + bx?+ cx + d = 0 can be solved manually using a scientific calculator
such as Casio fx-991 ES. This calculator can solve a cubic equation easily. The user just inputs
the cocfficients of the equation. The answer will then be displayed on the screen. The use of a
calculator is very advantageous for the students who need to solve a cubic equation quickly in
their study. However, for repeated uses such as in simulation the use of the calculator is very
awkward and time consuming.

A cubic equation can also be solved using Excel, a very good spreadsheet. Maple,
Mathematica, Mathcad or other software can also be used. We can also write a C program to
solve it. Software and programming languages arc better if there are many equations to be
solved repeatedly. We can use exact formulas for solving the equation or solve it numerically.
Usually we use Newton-Raphson method to find the roots; see [13], for example. However, it
is not often easy to find the guess value for the method. At high temperature. o approaches I
this makes Eq. (28) difficult to solve numerically. Slight change of the initial value makes the
equation unstable. Various important equilibrium reactions have been analyzed by [10] not only
for one equilibrium reaction but also for two and four equilibrium reactions.

While we can resort to numerical methods to solve a cubic equation, we can also find its

exact roots using Cardano’s or Tartaglia’s formula; see [3] for an interesting discussion about




the dispute on who first discovered the formula. For solving equilibrium reactions, it is better
to find the exact root because it is difficult to guess the initial value as demanded by the Newton-
Raphson method. For equations of state or simply supported beam problem shown in Figure 1,
initial values can be easily found. A C program to solve the three problems discussed in this

paper will be given in another paper

6. Conclusion

Threc applications of cubic equations in engineering have been discussed. Only real roots
are valid even though there are three roots in the equations. Often only one real root is used; the
other two are discarded. While Newton-Raphson method is usually used to solve a cubic
equation numerically, it is not easy to determine initial value for dissociation reaction that is
Eq. (28). At high temperature, o approaches 1. Slight change of the initial value makes the
equation unstable There are various ways for solving equation, from using a scientific calculator
to programming languages. Which one used depends on the need of solving the equation.
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