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GRAPHICAL ABSTRACT
ARTICLEINFO ABSTRACT a
Keywords: In this work, we successfully synthesized magnesium hydroxide (Mg(OH)z) nanostructure from seawater bittern
Magnesium f_')’dmxide _ by electrochemical method. The synthesis was performed at room temperature employing graphite and nickel as
E::“md‘m‘c"’ls)'“ﬂ‘es‘s anode and cathode, respectively, without any pH adjustment. The Mg{OH): nanomaterial was obtained in
(P;d((llll)) platelet form with length and thic dimensions of 100-200 and 30-50 nm, respectively. From the surface
. analysis, the as-synthesized Mg(OH no; rial has a large surface area (193.7 m® g'') and high pore volume
Adsorption
Wastewater treatment (0.563 em”® g‘lj, thus promising to be u the adsorbent for the removal of Pb(II) and Cd(Il) ions. Kinetics
analyses show that these hegvy metal ions followed the pseudo-sec er model with a rate constant (kz,) of
2.27 % 107° and 2.52 x 1& g mg™' min! for Pb(Il) and CA(I) io ectively. Meanwhile, the maximum

rption capacity (gma.) according to the Langmuir isotherm model for Pb(II) and Cd(II) ions was estimated to

.03 x 10° and 2.98 x 10° mg g ', respectively. These remarkable gy, values were mainly driven by a large
surface area and high pore volume of the as-synthesized material. Furthermore, the material can be remarkably
reused for at least six consecutive cycles without significant loss in the adsorption capacity. This work is capable
of providing highly efficient removal of heavy metal ions route by utilizing a low cost and highly reusable
nanostructured Mg(OH)s, shows promising prospects for further large-scale applications.
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1. Introduction

Water is critical for the existence of living beings [1-3]. Especially
for mankind, water is substantially the root of public healthiness, and
therefore access to clean water is indispensable to achieve public wel-
fare. However, serious water pollution has recently become a persistent
problem around the world owing to rapid population growth, urbani-
zation, industrialization and massive agricultural activities [4-7]. In
fact, ca. 40% of the lakes and the riveﬁmlmd the world have been
polluted with heavy metals 2 ]. Among heavy metals, lead (Pb{Il)) and
cadmium (Cd(II)) ions are widely found in aquatic samples in high
concentrations [9]. It should be noted that even at a low concentration,
these heavy metal ions can cause severe problems on human health, e.g.,
cancer, damages to the respiratory, anemia, neurological disorders, and
multiorgan failure [10-13]. T fore, World Health Organization
(WHO) has limited the maximum concentration of Pb(II) and Cd(II) ions

ing water to 0.010 and 0.005 mg L, respectively [14]. Thence,
the removal of Pb(II) and Cd(II) ions from wastewater is critical for the
development of adequate water resources.

Several techniques have been widely reported for the treatment of
wastewater containing Pb{Il) and Cd(II} ions, including adsorption [15],
chemical precipitation [16], coagulation [17], membrane filtration
[18], ion-exchange [19], reverse osmosis [20], and electrochemistry
[21]. These techniques, however, suffer from major drawbacks. For
instance, a large amount of coagulant is added for chemical coprecipi-
tation and coagulation techniques, while reverse osmosis is an expensive
and slow output process. Meanwhile, electrochemistry technique re-
quires high energy for the electrocoagulation process. Therefore,
considerable attention has recently been given to adsorption owing to
the simple operation of the technique, cost-effective, low energy de-
mand and feasible for large—nle applications [15].

Many materials prepared have been reported for the adsorption of Pb
(I} and Cd(Il) ions, e.g., carbon [22], clays [23,24], layered double
hydroxide [25], metal-organic framework [26], peat soil [27], and
metal hydroxides and oxides [28]. Among them, metal hydroxides and
metal oxides are much preferable for the removal of heavy metals due to
their practicality for industrial-scale applications [ 29]. Several adsor-
bents based on metal hydroxide and metal oxide have been prepared
from natural resources and/or urban mines, such as magnesium hy-
droxide (Mg(OH)2) [30], magnesium oxide (MgO) [31], zinc oxide
(Zn0) [32], magnetite (Fe304) [33], and titanium dioxide (TiO2) [34].
These materials, however, possessed relatively low adsorption capacity
and thence an adsorbent with higher adsorption capacity is keenly
desired to achieve high adsorption efficiency.

Mg(OH), nanostructure have recently been reported as a good
adsorbent for the removal of both organic and inorganic pollutants [35,
36]. This due to the fact that Mg{OH), generally exhibits high specific
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Fig. 1. Schematic process of the electrochemical synthesis of Mg(OH),
nanostructure.
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surface area and thus it usually also possesses high adsorption capacity.
Liu et al. reported that Mg(OH)2 nanostructure exhibited 90% adsorp-
tion efficiency for Cr(IV) ions with good reusability (5 cycles) [37]. Guo
et al. and Jiang et al. also reported that Mg(OH)2 nanostructure able to
remove 93% of Co(ll) and Ni(Il) ions from an aqueous solution within
50 min [38].

Generally, Mg(OH), can be prepared by using several techniques,
including electrochemical [39], precipitation [40], solvothermal [41],
sonochemistry [42], and microwave-assisted process [43]. Among these
preparation techniques, the electrochemical method is the one of the
widely used due to the possibility for the usage of natural resources, such
as seawater bittemn. During the electrochemical process, the Mg(Il) ions
in the solution are converted into solid Mg(OH), nanostructure [44,45].
Since to the best of our knowledge, the application of Mg(OH), nano-
structure prepared fro tural seawater bittern source through an
electrochemical method for the removal of Pb(I1) and Cd(II) ions has not
been reported yet, here we investigated the adsorption performance of
the electrochemically synthesized Mg(OH): nanostructure for the
removal of the as-mentioned metal ions. In the present study, the effect
of pH, reaction time and the concentration of Pb{Il) and Cd(Il) ions are
the main focus of our work. While the reaction rate and the adsorption
capacity were estimated, the adsorption mechanism was elucidated.
Moreover, the effect of the coexisting metal ions and reusability of the
as-prepared material were also highlighted.

2. Materials and methods
2.1. Materials

Bittern sample was obtained from salt farm in Pamekasan, Madura
island, Indonesia. Other chemicals, e.g., gelatin powder, sodium chlo-
ride (NaCl), potassium Boride (KCl), sodium hydroxide (NaOH), hy-
drochloric acid (HCl), lead(Il) nitrate (Pb{NO4),), and cadmium(IT)
nitrate tetrahydrate (Cd(NO3)y 4H,0) were of analytical grade pur-
chased from Sigma-Aldrich Reagent Pte. Ltd., Singapore. All chemicals
were used without any further purification.

2.2, Preparation and characterization of Mg(OH), nanostructure

The preparation of Mg(OH), nanostructure was conducted in a
similar manner to that the previously described in [45,46]. The elec-
trochemical process employed a two-compartment electrochemical cell
connected by a salt bridge (gelatin and NaCl suspension) with graphite
and nickel as the cathode and anode, respectively. The schematic pro-
cess of the electrochemical method is shown in Fig. 1. Bittern samples
were diluted four times with deionized water without any pH adjust-
ment and then the electrolysis process was performed at 18 V for 4h at
room temperature. The resulting solid at the cathode was filtered and
washed three times with deionized water. Afterward, the as-synthesized
Mgz(OH)2 nanostructure was dried and characterized with a scanning
electron microscope (SEM, FEI Inspect-S50) and transmission electron
microscope (TEM, JEOL JEM-1400). SEM andmr[ analyses were con-
ducted to visualize the morphology and size of Mg(OH)2 nanostructure.
The surface area and porosity of the Mg{(OH): nanostructure was
analyzed by nitrogen (N,) gas isotherm adsorption at 77 K through
surface analysis using BET technique (BET, Micromeritics TRIstar 3020).
Meanwhile, the diffractogram of Mg{OH), nanostructure was recorded
with a continued scanning for 2° min™! by using X-ray diffraction
spectrometer (XRD, Expert Pro PANAnalytical) with Cu Ko radiation at
1.5406 A (40 kV and 30 mA).

2.3, Batch adsorption experiment

13

The adsorption performance of Mg(OH)z rBostmcture was evalu-
ated through a batch adsorption process. The stock solutions of heavy
metal ions were prepared by dissolving the nitrate metal salts with
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Fig. 2. (a) SEM and (b) TEM images of the as-synthesized Mg(OH)2 nanostructure.

deionized water to obtain a concentration of 6 x 10* mg L™, The effect
of initial pH, time, and initial concentration were performed to optimize
the adsorption condition. All of the experiments were carried out in
three replications at 298 K for 4 h employing 100 mg adsorbent. The pH
value of the agueous solution was adjusted by the addition of 0.1 -mol L
! NaOH or 0.1 mol LT HCL The concentration of metal ions was
analyzed by using Inductively Coupled Plasma Optical Emission Spec-
troscopy (ICP-OES, Varian 715-ES). Meanwhile, the adsorption capacity
(q.» mg g1} and removal percentage (E, %) were calculated by using Eqs.
(1) and (2) as follows:

_6 - ¢ <V

m

e (1)
., - G)

E=
C,

* 100% (2)

whereas, C, and C, are metal concentrations before and after the
adsorption process (mg L), respectively; V is the volume of aqueous
solution (mL); and m is the mass of adsorbent [47].

3. Results and discussions
3.1. Characterizations of Mg( OH), nanostructiure

In this work, 30.45 g of Mg(OH)2 nanostructure was produced from
one liter of seawater bittem. The surface morphology of the as-
synthesized Mg(OH): was then observed by using SEM and TEM as
shown in Fig. 2(a) and (b), respectively. As displayed in Fig. 2(a), the
nanomaterial is composed of particles of different sizes and shapes. In
general, the nanomaterial was obtained in elongated flat shapes with
length of 100-400 nm and thickness of 20-65 nm. On the other hand,
Fig. 2(b) shows that the nanomaterial was ed in plates with length
of 100-200 nm and thickness of 30-50 nm. This result was in agreement
with the previously reported Mg{OH): nanomaterial with length of
100-200 nm and thickness of around 10 nm prepared by solid-state
reaction [38].

The adsorption-desorption isotherm of N2 gas for Mg(OH)2 nano-
structure is shown in Fig. 51(a). The as-produced Mg(OH)2 nano-
structure gave a characteristic of isotherm IV at medium to high pressure
with an H3 hysteresis loop. The adsorption hysteresis loop was found at
the center with unparalleled two branches indicating the porous struc-
ture of Mg(OH), which is in agreement with the SEM micrograph
(Fig. 2a). The pore distribution of nanostructured Mg(OH): was found in
a range of 5-45 nm (Fig. 51(b)) which was characteristic of mesopore
structure. From the surface analysis, the surface area and pore volume of
nanostructured Mg(OH)z were 193.7 m? g'l and 0.563 cm® g'l,
respectively. Table 1 shows the comparison of the surface area of some

Table 1
Comparison of the adsorption characteristics of Pb(II) and Cd(II) ions on the as-
synthesized Mg(OH)z nanostructure.

Adsorbent Sur &ace2 Pore G (Mg gD Ref.
e e h
(m (In
Thermally and 70.51 0.158 5263 2445 [50]
chemically treated
clay
Mesoporous carbon 4152 0.530 2356 4998  [51]
stabilized alumina
Ni-P microstructure 425.0 - 39.00 4070 [52]
Flowerlike MgO 72.00 - 1980 1500 [49]
Zn0 nanoflower 11.25 0.036 115.0  71.50 53]
MNano CaCO4 43.60 0.148 1179 B21.0 [54]
Mg(OH)a 159.0 0.740 4545 3571 [48]
functional ized
citric acid
MNanostructure Mg 193.7 0.563 4117 3043 This
(OH)2 work

reported adsorbents, whereas the surface area of the as-prepared Mg
(OH)z in this work is higher than thermally and chemically treated clay,
Zn0 nanoflower, and nano CaCQO3; materials. Furthermore, it shall be
noted that the as-prepared Mg(OH): nanostructure in this work
exhibited 1.2 times higher surface area and comparable pore volume
compared to that of citric acid- ionalized Mg(OH), (159.0 m? gl
0.740 cm?® g‘l) [45]. Moreover, the surface area of the prepared nano-
structured Mg(OH), in this work was also 2.7 times higher than the
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Fig. 3. XRD diffractogram of (a) Mg(OH), nanostructure and the standard of

(b) Mg(OH)z, (¢) CaCO5 and (d) NaCl.
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a. 4. FTIR spectra of Mg(OH)2: nanostructure (a) before and after being used
for the adsorption of (b) Pb(I) and (¢) CA(ID) ions.

surface area of flowerlike MgO material (72 m? g™') [49].

To gain more detailed information on the crystal phase in the Mg
(OH), nanostructure, the XRD analysis was carried out in a 20 range of
10-80°. The XRD analysis reveals the presence of Mg{OH)z (JCPDS, No.
44-1482) [48], CaCO3 (JCPDS, No. 33-0268) [55], and NaCl (JCPDS,
No. 5-0628) [56] crystal phases (see Fig. 3). The presence of CaCO3 and
NaCl erystal phases might due to the fact that the as-prepared Mg(OH)z
nanostructure was electrochemically prepared from seawater bittern
without any pre-treatment [57]. From the X-Ray Flouresence (XRF,
PANAnalytical Epsilon 3) analysis, the Mg{OH), nanostructure existed
in 91% purity (Table 52).

The FTIR spectrum of nanostructured Mg(OH), is shown in Fig. 4.
The free and hydrogen-bonded O-H functional groups of Mg(OH): were
observed at 3700-3800 and 3300-3600 cm™, respectively [58]. The
absorption signal of O-H bending and Mg-0O stretching appeared at
1743 and 1210-1230 cm ™, respectively. On the other hand, the Mg-0
bending signal was found at below 600 cm™ which was in agreement to
the previous reported literature [59].
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3.2 Adsorption of Pb(Il) and Cd(Il) ions by using Mg(OH)2
nanostructure

3.2.1. Effect of pH

Initial pH is an important parameter in this study since it affects the
surface charges of the as-synthesized adsorbent as well as the ionic
speciation of Pb(II) and Cd(II) ions in the solution. To investigate the
effect of pH on the adsorption percen , Mg{OH)2 nanostructure
(100 mg) was added into the solution of Pb{Il) or Cd(Il) ion (100 mL,
1000 mg L™!) at 298 K for 4 h. The pH of the solution was then adjusted
to a predetermined value by the addition of 0.1 mol L'! NaOH or HCL. It
was observed that the removal percentages of either Pb(II) or Cd(I) ion
increased by the increment of pH then reached a plateau (Fig. 5(a)).
Interestingly, approximately 60% removal of Pb(Il) and Cd(Il) ions was
observed even at strong acidic condition (pH 2.0), demonstrating good

orption performance of the as-synthesized Mg{OH), nanostructure
for the efficient removal of Pb{Il} and Cd(II) ions. Complete removal of
Pb(Il) was achieved at pH 7.0, while complete removal of Cd(Il) was
achieved at pH 8.0. At these pH values, the hydroxyl groups of Mg(OH)»
was deprotonated thus a complete Pb{Il) and Cd(II}) removal was ach-
ieved, which was in agreement with the previous report [45].

3.2.2. Effect of coexisting metal ions

It is well known that heavy metal ions may exist as a mixture with
other coexisting metal ions, especially alkali metal in [60]. Therefore,
in this work, the effect of Na(l) and K(I} ions on the adsorption of Pb{Il)
and Cd(II) ions was evaluated and the results are showninFig. 5(b) and
(c), respectively. It was revealed that the presence of eith a(I) or K(I)
ion slightly decreased the adsorpta percentages of Pb{Il) (Fig. 5(b))
and Cd(IT) (Fig. 5(c)) ions. As the adsorption of Pb{ll) and Cd(II} ions
occurred through an ion exchange reaction with the hydroxyl groups of
Mg(OH),, it is reasonable that coexisting mal ions also slightly affect
the adsorption percentages [49]. However, the adsorption percentages
of Pb(Il) and Cd(II) ions are still higher than 90% even at the highest
concentration of coexist etal ions, reflecting a good adsorption
performance of Mg(OH): for the removal of Pb(II) and Cd(II) ions from
aqueous medium.
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Fig. 5. (a) Effect of pH on the percent removal of Pb(II) and Cd(II) ions using Mg(OH), nanostructure at 298 K; (b) Effect of coexisting metal ions on the removal
efficiency of Pb(II) ion; (c) Effect of coexisting metal ions on the removal efficiency of Cd(II) ion; (d) Reusability test of the Mg(OH): nanostructure.
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Fig. 6. Nonlinear and linear fitting of the removal of Pb(I) and Cd(II) ions on Mg(OH): nanostructure using the (a, b) pseudo-first-order, (¢, d) pseudo-second-order,

(e, f) intraparticle diffusion and (g, h) Elovich kinetic models.

3.2.3. Reusability and stability tests

High adsorption performance and recyclability are critical parame-
ters for an adsorbent so that is favorable for largescale industrial pro-
cesses [15]. Therefore, in this work, we investigated tareusability of
the as-synthesized material (100 mg) for the removal of Pb({II}) and Cd(II)
ions with an initial concentration of 1.000 x 10* mg L~! at pH 7.0. The
regeneration of the adsorbent was conducted by simply washing the
adsorbent with a diluted NaOH solution followed by deionized water. As
shown in Fiz. 5, the assynthesized Mg{OH)2 nanostructure can be
reused for ast 6 times. During the first three cycles, no significant
difference in the removal percentages of Pb{ll) and Cd{Il) io
observed (Fig. 5(d)). At the fourth cycle, a slight decrement in the
removal percentages of Pb(Il) and Cd(II) was observed and then reached

a plateau for the fifth and sixth cycles. The reason for the slight decrease
in removal percentage of Pb(Il) and Cd(Il) ions after three cycles may be
caused by the loss of a slight amount of adsorbent caused during the
repeated adsorption process. However, it shall be noted that the Mg
(OH)2 nanostruc¥e still exhibited high adsorption percentages and
good reusability for Pb(Il) and Cd(Il) ions after six consecutive cycles,
which is remarkable. Fig. 6 and 7.

3.3. Adsorption kinetics

The adsorption kinetics of Pb{ll}) and Cd(Il} ions using Mg(OH)2
nanostructure was evaluated by using pseudo-first-order, pseudo-sec-
ond-order, intraparticle diffusion, and Elovich kinetic models [61]. As
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3

shown in Table 2, both Pb{Il) and Cd(Il) ions adsorption kinetics fol-
lowed the pseudo-second-order model with an R? value of 0.998 and
0.999, respectively, which was higher than pseudo—ﬁrslader, intra-
particle diffusion, and Elovich models. This means that the adsorption of
both Pb d Cd(II) ions is governed by at least two parameters,
plausibly the active sites of the adsorbent, i.e., -OH, and the concen-
tration of the Pb(Il) or Cd(Il) ion. The interaction between the two may
be then interpreted as a chemisorption process. This will further be
discussed in the adsorption isotherms section. The adsorption rate
constant of Pb(II) ion adsorption (kzp = 2.270 x 10'53 mg'l min ') was
slightly slower than that for Cd(II) ion adsorption (kz, = 2.520 x 107
gmg ! min!). Meanwhile, the theoretical value for Pb(II) ion
(1.087 x 10° mg g ') was higher than that fordl@H(II) ion (0.833 x 10°
mg g !). Furthermore, the theoretical g, values for Pb(IT) and Cd(II) ions

were closed to the experimental g, values of Pb(II) (9.997 = 10° mg g'l)
and Cd(ID) (9.995 = 10° mg g'l) ions, demonstrating the validity of the
pseudo-second-order model.

3.4. Adsorption isotherms .

2
The isotherm adsorption of Pb(ll) and Cd(II} ions employing Mg
(OH), nanostructure as the adsorbent was evaluated by varying the
initial concentration of metal io 0.500-6.000 x 10° mgL™) at a
constant temperature (298 K). The experimental data were then plotted
by using Langmuir, Freundlich, Temkin, and Dubinin- kevich
isotherm models [47]. The obtained isotherm parameters of Pb{ nd
Cd(II) ions adsorption are listed in Table 3. The adsorption of both Pb(IT)
and Cd(Il) ions fit well with the Langmuir model as shown by the R
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Table 2

Kinetic parameters for the removal of Pb(II) and Cd(ID) ions from aqueous so-

lution by using Mg(OH): nanostructure. n
Kinetic models Parameters Heavy metal ions
Pb(I) cd(n
Pseudo-first-order kip (min™) 1.880 2.010
gon ) 161.8 508.3
R? [m 0.914 0.961
Pseudo-second-order kzp (2 mg' min™) 2270 % 107 2520 % 107"
g. mgg ) 1.087 = 10° 0.833 = 10°
R* 0.998 0.999
Intraparticle diffusion kipp (mg gt min®%) 34,37 38.51
Cimggh 718.2 553.3
r* 0.835 0.675
Elovich a(mg g minY) 6.394 = 107 1.540 = 107
# g mg ") 7.881 = 107 7.251 = 107*
R* 0.941 0.848

Table 3

Isotherm parameters for the removal of Pb(II) and Cd(II) ions from aqueous

solution by using Mg(OH): nanostructure.
Isotherm models Parameters Heavy metal ions
Fb(II) cd(n
Langmuir Gonax (mg g7') 4117 043
K 0.021 0.038
g.(mgg™h) 4033 2980
3 0.987 0.984
Freundlich log Kp (mg g ! (mg L)Y 2710 2.700
™
1/n 0.290 0.230
3 0.973 0.958
Temlkin Kr(Lmg™) 1110 2.750
b (J mol™) 4,990 B.230
3 0.945 0.908
Dubinin- Kor 3.821 % 10° 2,863 % 10°°
Radushkevich
g (mg g ™) 2715 2405
R 0.774 0.802

value of 0.987 and 0.984, respectively, which was higher than Freund-
lich, Temkin, and Dubinin-Raduskevich models. It means that the
adsorption of these heavy metal ions occurred through a chemisorption
process on the surface of the adsorbent. The theoretical g, val r Pb
(I1) (4,117 mg L!) and Cd(II) (3,043 mg L) derived from the muir
model are close to the experimental values of Pb(Il) (4,033 mg L)
and Cd(II) (2,980 mg L), respect . Compared to the other adsor-
bent materials, the gmay value for Pb(Il) and Cd(Il) removal by using
nanostructured Mg{OH)z was higher than mesoporous carbon stabilized
alumina, flowerlike MgO, Ni-P microstructure, ZnO nanoflower, nano
CaCOs3, and ZrMOFs functionalized NHs, which is remarka Table 1).
This higher adsorption capacity is most likely due to a larg face area
and pore volume (Table 1). Even though the gme, value for Pb(II} and Cd
(II) r al by using nanostructured Mg(OH), is sligh er than
those reported for Mg(OH), functionalized citric acid, the preparation of
Mg(OH), nanostructure in this work was simpler and lower-cost from
seawater bittern sources. These findings demonstrate that the
as-prepared Mg(OH)2 nanostructure is a potential adsorbent material for
an efficient Pb(I[) and Cd(I) removal from the aqueous media.

3.5. Plausible adsorption mechanism

Fig. 4 shows the FTIR spectrum of Mg(OH), nanostructure before and
after the adsorption of Pb(Il) and Cd(II) ions. The intensity of the O-H
functional group of Mg(OH), at 3800-3300 and 1743 cm™ decreased
after Pb(I[) and Cd(Il) adsorption indicating that the adsorption mech-
anism mainly occurred through ion-exchange reaction.amilar result
was reported by Ponomarev et al. [62] for Ni(Il), Cd(II), and Pb(II)
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Fig. 8. Plausible adsorption mechanism of Pb(I) and Cd(Il) ions on the Mg
(OH): nanostructure.

adsorption using lignin-Mg{OH): nanocomposite material. The plau-
sible adsorption mechanism is shown in Fig. 8.

4. Conclusions .

5
In summary, Mg{OH), nanostructure is a promising adsorbent for the
removal of Pb(I) (Cd(II} ions due to its high adsorption capacity and
reusability. The Mg(OH)2 nanostructure was successfully prepared
through an electrochemical process from the natural seawater bittern.
Characterizations of the material revealed the existence of Mg(OH)z in a
nanostructured form with a large surface area and pore volume,
resulting in remarkably high gmay value of 4.03 x 10? dan 2.98 x 10*
! for Pb(II) and Cd(II) ions, respectively. adsorption kinetics
followed the pseudo-second-order model with e constant (kgp) of
227 x 10° and 2.52 % 10 g mg ! min’ for Pb(Il) and Cd(ID),
respectively. These findings demonstrate that the as-prepared Mg(0OH)»
nanostructure from natural seawater bittern source shows promising

prospects for further large-scale applications.
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